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Abstract--This paper presents a numerical study of mixed convection heat and mass transfer in horizontal 
rectangular ducts. The vorticity-velocity method with the Du Fort Frankel scheme is employed to solve 
the governing equations for the flow, heat and mass transfer. Variations in local friction factor ratio, 
Nusselt number and Sherwood number with different parameters are shown for species diffusion of interest 
in air (Pr = 0.7) over a Schmidt number range of Sc = 0.2 2.0. In this work, the Rayleigh numbers are 
varied from 0 to 10 5 for aspect ratios 0.5, 1 and 2 with buoyancy ratios ranging from -0.8  to 2.0. The 
results show that the distributions of local Nusselt (Sherwood) number are characterized by a decay near 
the inlet in which the forced-convection entrance effect dominates; but the decay is attenuated by the onset 
of buoyancy-driven secondary flow. After a local minimum being researched, maximum and minimum 
local Nusselt (Sherwood) numbers may exist for some cases. Finally, the Nu (Sh) falls asymptotically to 
the value of Graetz problem when the bulk temperature (concentration) approaches the wall temperature 
(concentration). Additionally, the f R e ,  Nu and Sh are found to increase and decrease as the buoyancy 

force from species diffusion assists and opposes, respectively, the thermal buoyancy force. 

1. INTRODUCTION 

Transport  processe,;, in which the simultaneous buoy- 
ancy forces of  heat and mass transfer have con- 
siderable influences on the momentum,  heat and mass 
transfer in a flowing gas mixture, are often enco- 
untered in many .engineering systems and natural 
environments. Ncticeable examples include the 
chemical distillatory processes, design of  heat 
exchangers, channel type solar energy collectors and 
thermo-protection ~;ystems. Hence, the effects of  com- 
bined buoyancy forces due to the variations of  tem- 
perature and concentration on the laminar forced con- 
vection in horizontal rectangular ducts are relatively 
important.  

A vast amount  ol! work, both theoretical and exper- 
imental, exists in the literature to examine the thermal 
buoyancy effects on the forced convection heat trans- 
fer in horizontal ducts. Only those relevant to the 
present work are briefly reviewed here, The fully- 
developed mixed convection heat transfer in hori- 
zontal rectangular ducts has been investigated by 
Cheng and Hwang [1] and Chou and Hwang [2]. The 
heat transfer enhancement in laminar fully developed 
channel flow by means of  heating from below was 
experimentally examined by Ostrach and Kamotani  
[3]. But these results are limited to a long channel, 
only. 

Employing the assumption of  large Prandtl 
number,  Cheng et al. [4], Ou et al. [5] and Cheng and 
Ou [6] have studied the mixed convection heat transfer 

in the thermal entrance region of  horizontal rec- 
tangular channels. The same problems were also 
examined for a horizontal tube by Hieber and Sreeni- 
vasan [7], Hong  et al. [8], Ou and Cheng [9] and 
Hishida et al. [10]. Their  results showed that the sec- 
ondary flow induced by the thermal buoyancy force 
can enhance significantly the heat transfer. In 
addition, the buoyancy would decrease the thermal 
entrance length. 

By using large Prandtl number assumption, the 
inertia terms in the momentum equations are neglec- 
ted. That  is, the secondary flow is not  significant in the 
momentum equations but is important  in the energy 
equation. However,  the results are obviously not  
applicable to both moderate and small Prandtl  num- 
ber fluids. Without  the assumption of  large Prandtl  
number, the detailed numerical studies on mixed con- 
vection heat transfer in horizontal ducts or  pipes have 
been investigated by Abou-Ellai  and Morcos  [11], 
Incropera and Schutt [12], Mahaney et al. [13], Chou 
and Hwang [14, 15], Lin and Chou [16] and Lin et al. 
[17]. Experimental studies for mixed convection heat 
transfer in the horizontal channels have been inves- 
tigated by Hwang and Liu [18], Kamotani  et ai. [19] 
and Maughan  and Incropera [20]. 

The effects of  combined buoyancy forces of  heat 
and mass diffusion on laminar forced convection heat 
transfer in a vertical parallel-plate channel or pipe 
were well studied. Santarelli and Foraboschi  [21] 
examined the buoyancy effects on laminar forced con- 
vection flow undergoing a chemical reaction. The 
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N O M E N C L A T U R E  

A cross-sectional area of a horizontal 
rectangular duct [m 2] 

a, b width and height of a rectangular duct, 
respectively [m] 

c, C dimensional and dimensionless species 
concentration, respectively 

D mass diffusivity 
De equivalent hydraulic diameter, 4A/S  
f friction factor, 2~w/(Po~f:) 
g gravitational acceleration [m s -2] 
Gr Grashof number, 9fl(Tw - To)D~/v 2 
/, J number of finite difference divisions in 

X and Y directions, respectively 
/~ average heat transfer coefficient 

[W m-2K 1] 
hM average mass transfer coefficient 
m ruth iteration 
N buoyancy ratio, 

fl*(ew- Co)/[fl(Tw - To)] 
Nu local Nusselt number, flDe/k 
Pm dynamic pressure [kPa] 
p cross-sectional mean pressure [kPa] 
/~ dimensionless cross-sectional mean 

pressure 
P '  perturbation term about the mean 

pressure/~ 
Pr Prandtl number, v/a 
Ra Rayleigh number, Pr Gr 
Re Reynolds number, ~rDe/v 
S circumference of cross section [m] 
Sc Schmidt number, v/D 
Sh Sherwood number, [lmDe/D 
T temperature [K] 
To inlet temperature [K] 

Tw wall temperature [K] 
U, V, W dimensionless velocity components 

in the X, Y and Z directions, respectively 
wr fully-developed axial velocity before 

the entrance [m s-J] 
Wf dimensionless fully-developed axial 

velocity before thermal entrance 
I~f mean quantity for Wf 
x, y, z rectangular coordinate [m] 
X, Y, Z dimensionless rectangular 

coordinate, X = x/De, Y = y/De, 
Z = z/(ReOe) 

Z* dimensionless z-direction coordinate, 
z/(PrReDe) = Z/Pr.  

Greek symbols 
c~ thermal diffusivity [m 2 s -~] 
fl coefficient of thermal expansion [I/K] 
fl* coefficient of concentration expansion 
7 aspect ratio of a rectangular duct, a/b 
0 dimensionless temperature, 

( T -  To)/(T~ -- To) 
v kinematic viscosity [m 2 s-i]  

dimensionless vorticity in axial 
direction 

p density [kg m-3]. 

Subscripts 
b bulk fluid quantity 
f fully-developed quantity before 

thermal entrance 
o condition for purely forced convection 
w value at wall. 

effects of wetted wall on laminar mixed convection 
heat and mass transfer in a vertical pipe were per- 
formed by Lin et al. [22]. In their analyses, they found 
that the buoyancy forces have considerable effects on 
laminar forced convection. Recently, mixed con- 
vection heat and mass transfer in a horizontal square 
duct has been studied by Line t  al. [23]. In ref. [23], a 
uniform temperature and uniform concentration is 
assumed along the bottom wall of a square rectangular 
duct. While the other walls, a zero heat and mass flux 
(i.e. insulated) is assumed. In addition, the flowing 
gas mixture is limited to the air-water vapor mixture. 

Regardless of its importance in engineering appli- 
cations, the mixed convection heat and mass transfer 
in horizontal rectangular ducts has not been well 
evaluated. This motivates the present investigation. 
The purpose of this study is to examine the effects 
of combined buoyancy forces of thermal and mass 
diffusion in horizontal rectangular channels. 

2.  A N A L Y S I S  

2.1. Problem statement 
The geometry of the system to be examined, as 

schematically shown in Fig. 1, is a horizontal rec- 
tangular duct. The walls are kept at a uniform tem- 
perature Tw and uniform concentration ew. The u, v 

/ - /  

] Tw 8, Cw l Direction Tw & Cw 

, . T w &Cw I 

alZ - - - J r "  
"-i 

Fig. 1. Physical configuration and coordinate system. 
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and w are the velocity components in the x, y and z 
directions, respectively. A fully-developed axial vel- 
ocity profiles wf is imposed at the entrance z = 0. The 
fluid at the entrance z = 0 has a constant temperature 
To and concentration Co. The flow is assumed to be 
steady and have constant thermophysical properties 
except the buoyancy term in the y momentum equa- 
tion. The buoyancy force resulting from the con- 
centration difference may assist or oppose the buoy- 
ancy force from the temperature variations in the 
fluid. To facilitate the analysis, an order of magnitude 
analysis is employed which deduces the governing 
equations by neglecting the axial diffusion of momen- 
tum, heat and mas,; [12-14]. Because of the symmetry 
inherent in the problem, the calculations can be 
restricted to a solution domain that comprises one- 
half of the horizontal rectangular duct as shown in 
Fig. 1. 

2.2. Governing equations 
The governing equations are those of conservation 

of mass, momentum, energy and concentration. The 
pressure gradient and body force terms in the trans- 
verse momentum equations are: 

- O p / & y - p g .  (1) 
I 

By using the equation of state for an ideal gas mixture 
and assuming a low level of concentration in the flow, 
the density variation in the flow can be approximated 
by 

p = p o [ 1 - [ 3 ( T -  To)-fl*(C-Co)] (2) 

where Po is the density evaluated at the reference tem- 
perature To and concentration Co. With a dynamic 
pressure Po defined as 

Pm = P--PogY (3) 

equation (1) may be rewritten as 

--Opm/Oy+pogfl(T-- To)+pogfl*(C-Co). (4) 

The flow is assumed to be parabolic [12-14] and in 
the axial momentum equation a space-averaged pres- 
sure p is imposed to prevail at each cross section, thus 
permitting a decoupling from the pressure Pm in the 
cross-sectional momentum equations. This 'pressure 
uncoupling' follows the parabolic-flow practice and, 
together with the neglect of axial diffusion of momen- 
tum, heat and concentration by an order of analysis, 
permits a marching-integration calculation procedure. 
To conveniently present the governing equations, the 
dynamic pressure Pm can be represented as the sum of 
a cross-section mean pressure p(z), which derives the 
main flow, and a perturbation about the mean, 
i f ( x ,  y), which derives the cross stream flow, 

p~, = p(z) +p ' ( x , y ) .  (5) 

As a final step, dimensionless variables are intro- 
duced as follows: 

X = x/D~ Y = y/D~ 

Z = z/(ReD~) Z*  = Z/Pr  

U = u'Do/v V = vDo/v 

W = w/~Vr P = P/~o~V~) 

P'  = p'/(pov2/D~) 0 = ( T -  To)/(Tw -- To) 

C = (C--Co)/(Cw--Co) Gr = g f l (Tw-  To)n3/v 2 

Ra = PrGr N = fl*(Cw-Co)/[fl(Tw- To)] 

Pr = v/ot Sc = v/D 

? = a/b D e = 4A/S. (6) 

With these definitions and the assumptions made 
earlier, the non-dimensional governing equations are: 
continuity equation: 

~ U / ~ X + ~ V / ~ Y + O W / O Z  = 0 (7) 

x-direction momentum equation: 

U ~U/OX + V OU/c~ Y + W OU/t~Z 

= -~3P'/3X+c~2U/0XZ+02U/OY2 (8) 

y-direction momentum equation: 

U OV/OX+ V&V/OY+ W&V/OZ 

= - O p ' / o y T 6 3  2 V/OX 2 -]-0 2 V/Oy z 

+ (Ra/Pr)" (O+NC)  (9) 

z-direction momentum equation: 

UOW/OX+ V a W / & Y +  WOW/OZ 

= - d P / d Z + O 2 W / O X 2 + O 2 W / O Y  2 (10) 

energy equation: 

UaOlaX+ VaOla Y +  WaOlaZ 

= (O20/OXZ+d20/OyE)/pr (11) 

concentration equation: 

u ~C/&x + v oc/~ Y + w &c/Oz 

= (~2C/OX2+O2C/OYZ)/Sc. (12) 

The non-dimensional axial vorticity can be ex- 
pressed as 

= OU/OY-OV/aX.  (13) 

The axial vorticity transport equation can be derived 
from equations (8) and (9) as 

u o{/~x + v o~/a Y + w a{/az 

+ ~(~ u/ax+ ~ via Y) + (~ w/& Y. ou/~z 

- ~ w / a x .  ov/~z) 

= 02 {/OX 2 + ~2 ~/~ y2 _ (Ra/Pr) 

•(OOlaX+ N aClaX). (14) 

The equations of the transverse velocity com- 
ponents (U, V) can be derived from the continuity, 



1482 W.-M. YAN 

equation (7), and the definition of axial vorticity, 
equation (13), as 

82U/dX2+O2U/dY2 = 8~/dY-82W/dXdZ (15) 

02V/dX2 +6~2V/OY 2 = -8~/dX-O2W/dYdZ. (16) 

2.3. Boundary conditions 
As mentioned earlier, because of the symmetry 

about the symmetric plane as shown in Fig. 1, it is 
sufficient to solve the equations over only the left-hand 
side of the horizontal rectangular duct. Conditions of 
interest in this work are 
duct walls: 

U =  V= W=O,  O = C = I  (17a) 

midplane [X = (1 +7)/4]: 

~ w / ~ x  = u = e v / o x  = ~ o / o x  = o c / ~ x  = o 

(17b) 

entrance (Z = 0): 

W= Wf, U -  V = ~ = O = C = O .  (17c) 

The interfacial velocity at the duct walls as a result 
of mass diffusion process will be neglected in the 
analysis. This is because consideration will be given 
to situations in which the concentration level is low. 
The validity and the condition for the neglect of inter- 
facial velocity has been discussed in refs. [24, 25]. In 
the study of duct flow, the overall mass flow rate at 
every axial location must be balanced in the duct flow, 

I i  1+~')/(27) Ii 1+7)/4 W d X d Y =  (1 +7)2/(87). (18) 

This equation is used to deduce the pressure gradient 
in the axial momentum equation, equation (10). 

2.4. Governing parameters 
The governing equations contain five dimensionless 

parameters: Ra, N, 7, Pr and Sc. Buoyancy ratio N 
represents the relative effect of chemical species 
diffusion on the thermal diffusion. When N = 0, there 
is no mass diffusion effect and the buoyancy force 
arises solely from the temperature difference. The 
buoyancy forces from mass and thermal diffusion are 
combined to assist the flow when as N > 0, whereas 
they oppose each other as N < 0. In this work, the 
results are presented for species diffusion in air 
(Pr = 0.7) with Schmidt numbers ranging from 0.2 to 
2.0. This covers diffusion into air of hydrogen 
(Sc = 0.22), water vapor (0.6), ethanol vapor (1.3) 
and benzene vapor (2.01) [24, 25]. The Rayleigh num- 
bers Ra were varied between 0 and 105 for aspect 
ratios 7 0.5, 1.0 and 2.0 with buoyancy ratios N from 
- 0 . 8  to 2. 

3. SOLUTION METHOD 

The governing equations are solved by the vorticity- 
velocity method for three-dimensional (3D) parabolic 
flow [26]. The equations for the unknowns U, V, W 
4, 0, C and d_P/dZ, equations (10)-(12) and (14) (16) 
satisfying boundary conditions (17), are coupled. A 
numerical finite-difference scheme based on the vor- 
ticity-velocity method is used to obtain the solution 
of equations (10) (12) and (14)-(16). The solution 
procedure is as follows: 

(1) The axial velocity at the entrance (Z = 0), con- 
strained to Wf = 1, is solved independently using the 
S.O.R. method. 

(2) The initial values of U, V, 0 and C are assigned 
to be zero at the entrance. 

(3) For any axial location, with the known values 
of U, V and assigned (dP/dZ), the axial velocity W at 
the current position is obtained from equation (10), 
with constraint (18) to meet the requirement of con- 
stant flow rate. 

(4) With the known values of U, V and W, the 
equations (11), (12) and (14) for 0, C and ~ subjected 
to the boundary conditions can be solved by the Du 
Fort-Frankel method [27]. 

(5) The values of 02W/dXdZ, 82W/OYdZ, 8~/8Y 
and 8~/8X in equations (15) and (16) are calculated 
by using backward differences axially and central 
difference in the transverse directions. The elliptic- 
type equations (15) and (16) are then solved for U 
and V by iteration. During the iteration process, the 
values of vorticity on the boundary are evaluated sim- 
ultaneously with U and V in the interior region. The 
boundary vorticity can be evaluated with an 
expression given in ref. [14]. 

(6) Steps (3)-(5) are repeated at a cross-section 
until the following criterion is satisfied for the velocity 
components U and V, 

e = Max I~bi"i +' - qS~.]l/Max I~i,n;-t- 1 I < 10 -5, 

qS= U or  V (19) 

where m is the mth iteration of steps (3) (5). 
(7) Steps (3)-(6) are repeated at each axial location 

from the entrance to the downstream of interest. 

In this work, the uniform cross-sectional meshes 
were chosen, while the z direction grid spacing was 
nonuniform with grid lines being more closely packed 
near the entrance (Z = 0). The axial step size AZ* 
was varied from 2 x 10 5 near the duct entrance to 
about 2 x 10 -4 near the fully-developed region. Grid 
independence tests both in the cross-sectional direc- 
tion and axial direction have been performed for a 
typical case ofPr = 0.7, Ra = 5 × 104, N = 1, Sc = 0.6 
and 7 = 1. Three arrangements of grid points in the 
x, y and z directions are tested and corresponding 
results are presented in Table 1. It is found that the 
deviations in Nu calculated with I x  J = 16 x 32 and 
20 x 40 (AZ* = 2 x 10-5-2 x 10 -4) are always less 
than 2%. Furthermore, the deviations in Nu cal- 
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Table 1. Comparisons of local Nusselt number for different mesh size (Ix J) and axial step size (AZ*) for Ra = 5 x 104, 
N =  1, S c = 0 . 6 a n d T =  1 

Z *  

Ix  J Nu 
(AZ*) 0.001 0.004 0.010 0.030 0.070 0.150 0.40 

16 x 32 9.383 6.503 6.857 7.161 5.912 4.281 3.305 
(2 x 10 5-2 x 10 -4) 

20 x 40 9.368 6.445 6.748 7.123 5.912 4.316 3.048 
(2x 10-L2x 10 -4) 

16 x 32 9.374 6.471 6.823 7.151 5.912 4.280 3.034 
(5x10 -6 2x10 4) 

culated using I x J  ( A Z * ) = I 6 x 3 2  (5×10  -6-  
2 x 10 -4) and 16 x 32 (2 x 10 5-2 x 10 -4) are all less 
than 2%. Accordingly, the computat ions involving 
a I x J  (AZ*) = 16x32  (2x  10-5-2x  10 -4) grid are 
considered to be sufficiently accurate to describe the 
heat and mass transfer in a horizontal rectangular 
duct. All the results presented in the next section are 
computed using the latter grid. 

As a partial verification of  the computat ional  pro- 
cedure, results were initially obtained for mixed con- 
vection heat transfe: in a horizontal rectangular duct 
with Pr = 0.7, Ra =: 6 x 10 4 and 7 = 1.0. The results 
for heat transfer were compared with those of  Chou 
and Hwang [14]. The Nusselt numbers were found to 
agree within 1%. Additionally, the results of  limiting 
case of  forced convection were calculated and com- 
pared with those of  Shah and London [28]. Excellent 
agreement was obtained. Through these validation 
procedures, the above solution method is suitable for 
the present problem. 

4.1.1. Effects of  Rayleiyh Number Ra. Figure 2 pre- 
sents the axial variations of  ( fRe) / ( fRe)o  for different 
Rayleigh number Ra at 7 = 1, N = 1, Sc = 0.6 and 
Pr = 0.7. It is clear that the buoyancy effect is neg- 
ligible up to a certain axial distance Z*.  This axial 
distance depends primarily on the magnitude of  the 
Rayleigh number: the greater is Ra, the shorter is the 
distance. Since the development of  successive 
strengthening and weakening of  the secondary flow is 
repeated, the value o f f R e / ( f R e ) o  appears an oscil- 
latory phenomenon when Ra becomes large. After  
reaching their maximum values, the curves of f Re/ 
( fRe)o then gradually approach 1 as the bulk fluid 
temperature and concentration approach the wall 
temperature and concentration, The occurrence of  
maximum local friction factor is closely related to the 
appearance of  local maximum secondary flow inten- 
sity [12, 16]. Also found in Fig. 2 is that the increase 
in the value of f Re over the forced convection value 
of  (fRe)o can be as much as 75% for Ra = 105. 

4. RESUI.TS AND DISCUSSION 

4.1. Axial distributions of  friction factor, Nusselt and 
Sherwood numbers 

The results of  the local pressure gradient in the 
entrance region of  the horizontal rectangular duct 
may be presented through the value of  dimensionless 
friction factor 

f Re / ( f  Re)o = (dP/dZ)/(d,O/DZ)o (20) 

where the subscript o denotes the quantity for forced 
convection without buoyancy effects. The value is 
available in ref. [2811. 

The Nusselt and iSherwood numbers are of  import-  
ance because they are directly related to the heat and 
mass transfer coefficients. The cross-sectional aver- 
aged Nusselt and Sl~erwood numbers can be evaluated 
by considering the overall energy and concentration 
balance for axial length, dZ, 

Nu = [Pr/(1 --0b)]" (OOb/~Z) (21) 

Sh = [Sc/(1 -- Cb)]" (OCb/OZ) (22) 

1.8 i i i , i = l l  I i L , , i i , ,  I 

}'=I 

N=I 5c=0.6 

o 1.6 ~ ~  

~" 1./, 

1.2 ~ 

1.0 , 
i0-3 10 -2 10 -~ 

Z ~ 

Fig. 2. The axial variations of the local friction factor ratio 
for N = l, Sc = 0.6 and 7 = 1 with Ra as parameter. 
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~! - ~ 5 × 1 0  xx 

"% . ? ' \  % 

N % N %  

2 , , , , , ; 1 1 1  i i i i i i i i i  i i 

1 0 -  3 1 0  . 2  10 -1  

Z* 
Fig. 3. The axial variations of the local Nusselt and Sherwood 
numbers for N = 1, Sc = 0.6 and y = 1 with Ra as parameter. 

1 . 8  ' ' ' ' ' ' ' ' I  ' ' ' ' ' ' " I  ' 

T = I  

Ro=Sxl0  ~ 
5 c = 0 . 6  

1.6 

o 

~ • 

1 . 2 ~  

10 
• 10- 10 .2 10 -1 

Z ~ 

Fig. 4. The axial variations of the local friction factor ratio 
for Ra = 5 × 104, Sc = 0.6 and 7 = 1 with Nas parameter. 

Longitudinal distributions of  the peripherally aver- 
age Nusselt and Sherwood numbers are shown in Fig. 
3. Referring to the near-entry region, the results are 
seen to provide a monotonic  decay in Nu and Sh. This 
is attributed to the entrance effect. The initial increase 
in Nu (Sh) above the corresponding curve of  forced 
convection is owing to the formation of  buoyancy- 
driven secondary flow. However,  the Nu (Sh) con- 
tinues to decline with increasing Z*. The first mini- 
mum in the Nu (Sh) distribution is reached when 
the reduction in Nu (Sh) due to forced convection 
entrance effect is balanced out by an increase owing 
to the buoyancy-driven secondary flow. After reach- 
ing the first minimum in Nu (Sh), two oscillations 
occur as the flow goes downstream for Ra = 5 × 10 4 

and 1 × 105. The results then gradually approach an 
asymptotic situation. The first minimum in the Nu 
(Sh) and the subsequently oscillatory phenomena are 
also found in the results of  mixed convection heat 
transfer in a horizontal duct [13, 17]. The oscillations 
for Nu and Sh are attributed to the successive strength- 
ening and weakening of  the secondary flow being 
repeated• In addition, the variation of  the Sh 
resembles that of Nu because Pr ( =  0.7) is close to Sc 
(0.6). It is worth noting that in this study the free 
convection effect is practically insignificant for 
Ra <~ 5 x  10 2. This clearly demonstrates that the 
forced convection result is a limiting case and applic- 
able only when Ra ~< 5 × 10 2. 

4.1.2. Effects of buoyancy ratio N. The effects of  
buoyancy ratio N on the variations of  local f R e /  
(fRe)o, Nu and Sh are presented in Figs. 4 and 5. The 
buoyancy ratio N represents the ratio of  the con- 
centration to thermal buoyancy. It is clear that as 
compared to the case of  N -- 0 (i.e. the case in which 

there is no mass diffusion effect and the buoyancy 
force arises only from the thermal variations), the 
local friction factor, Nusselt and Sherwood numbers 
increase when the buoyancy force from species 
diffusion acts in the same direction of  the thermal 
buoyancy force (i.e. as N > 0) and decrease when the 
solutal buoyancy force acts in the opposite direction 
of  the thermal buoyancy force (i.e. as N < 0). Indeed, 
the combined effects of  thermal and solutal diffusion 
are represented by the term O+NC in equation (9). 

10 

e -  

6 

i , i i , , i l l  i i i , i i J ,  I 1 

N U  

Sh 

= o 6  

2 i i t i , , l J [  i i i i i i l l l  i i 

10-3 10 -2 10-I 

Z ~ 
Fig. 5. The axial variations of the local Nusselt and Sherwood 
numbers for Ra = 5x l0 4, Sc = 0.6 and 7 = 1 with N as 

parameter. 
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1.6 . . . . . . . .  I ' ~'~ . . . . . .  I ' 

Ro=sxl0 I / \ \  
N=I 

1.4 
._.o 

1.2 ~ , 1 ~  

1.0 ' I I I I I I I I  I I I I i === = i 
10 .3 10 .2 10 -1 

Z* 
Fig. 6. The axial variztions of the local friction factor ratio 

for Ra = 5 × 10 4, N := 1 and 7 = 1 with Sc as parameter. 

When the combinal ion of  Pr, So, Ra, N and 7 is such 
that O+NC > 0, the net buoyancy force contributes 
to an increase in the', friction factor, Nusselt and Sher- 
wood numbers beyond their respective values for 
N -- 0. On the other hand, if  0 + NC < 0, the net buoy- 
ancy force will contribute to a decrease in these three 
quantities below those for N = 0. Inspection of  Figs. 
4 and 5 further indicates that the location at which 
enhancement begins advances upstream with increas- 
ing N. This effect is due to the increase in the combined 
buoyancy effects of thermal and solutal diffusion. 

4.1.3. Effects ofSehmidt number Sc. Figures 6 and 
7 give the effects of  Schmidt number on the local 
friction factor, Nus'selt and Sherwood numbers. Over- 
all inspection on Figs. 6 and 7 discloses that the axial 
location of  the occurrence of  the onset of  buoyancy 
effect is almost independent of  the value of  Schmidt 
number So. Moreover,  under the range of  Sc = 0.2 to 
2, the development of  the flow, heat and mass transfer 
is slower for the system with a larger Schmidt number 
Se. Closer inspection on Figs. 7(a) and (b) reveals 
that the axial location of  the first minimum of  the 
local Nu (Sh) advances upstream for a smaller Se. In 
addition, larger values of  Schmidt number Sc are seen 
to provide larger Sherwood number Sh. This is due to 
the fact that a larger Schmidt number corresponds to a 
smaller binary diffusion coefficient for a given mixture 
and to a thinner concentration boundary layer relative 
to the momentum boundary layer. This results in a 
larger mass transfer rate at the duct walls or a larger 
Sherwood number. 

4.1.4. Effects oj aspect ratio 7- The effect of  the 
aspect ratio of  a rectangular duct on the variations of  
the fRe/ ( fRe)o ,  Nu and Sh is of  practical interest. The 
local variations of  the f R e / ( f R e ) o  for aspect ratios 

10 l i i i i i i i I I i i i i t , , I , i 
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X Ra=5xl04 

~ 6  

4 
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12 f 10 ~ ~ S G  = 2.0 RQ=Sxl04 N=I 

10 -3 10 -2 10 -1 

Z ~ 
Fig. 7. The axial variations of the local Nusselt and Sherwood 
numbers for Ra = 5 x 10 4, N = 1 and ~, = 1 with Sc as par- 

ameter. 

7 = 0.5 and 2 are shown in Fig. 8. Comparing Figs. 2 
and 8, it is found that the behavior of  t h e f  Re/(fRe)o 
for aspect ratio Y = 0.5 and 2.0 is qualitatively similar 
to that of  7 = 1. However,  the maximum values of  the 
f R e / ( f R e ) o  of  square channel (i.e. 7 = 1) are higher 
than those with other aspect ratios. Figures 9(a) and 
(b) are the local distributions of  Nusselt number for 
7 = 0.5 and y = 2.0, respectively. In each of  these two 
figures, the lowest curve can be regarded as a limiting 
case for pure forced convection. With further com- 
parison with Fig. 3, one can observe that the heat 
transfer performance in the channel with smaller 
aspect ratio y = 0.5 is better than those for other 
aspect ratio (7 = 1 or 7 = 2.0). This is due to the 
heated side-wall effect, which is more significant when 
aspect ratio is small. The side walls induce a strong 
secondary flow in the region near the side walls [16]. 

As mentioned earlier, the local Nusselt number vari- 
ations reveal that the onset of  secondary flow effect 
due to buoyancy forces occurs at a certain entrance 
distance depending on the value of  Rayleigh number 
or buoyancy ratio. Up  to the onset point, the Graetz 
theory applies. In this respect, the onset of  secondary 
flow effect is of  practical interest in design. In the 
work, a 2% deviation of  local Nusselt number from 
the value for pure forced convection was used as the 
criterion for onset of  the thermal instability. This cfl- 
teflon was also used by Ou et al. [5] and Lin et al. [17] 
to study the onset of  the thermal instability. Figure 10 
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Fig. 8. The axial variations of the local friction factor ratio 
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Fig. 9. The axial variations of the local Nusselt number with 

Ra as parameter for (a) 7 = 0.5, (b) 7 = 2.0. 
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Fig. 10. The effects of buoyancy ratio and Schmidt number 
on the axial locations for 2% increase of local Nusselt 

number• 

gives the effects of  the buoyancy ratio N and Schmidt 
number Sc on the axial locations for 2% increase of  
local Nusselt number, In Fig. 10, the onset points 
advance when the solutal buoyancy force assists the 
thermal buoyancy force (N = 2). Moreover,  the effect 
of  Schmidt number Sc on the axial locations for 2% 
increase of  local Nusselt number is insignificant. 

4.2. Developments of  axial velocity, temperature and 
concentration 

Although the presentation of  the local friction 
factor, Nusselt number and Sherwood number in 
mixed convection heat and mass transfer is a major 
goal in this work, developments of  axial velocity, tem- 
perature and concentration profiles are of  engineering 
interest and useful in clarifying the heat and mass 
transfer mechanism. Figure 11 shows the devel- 
opments of  axial velocity along the vertical center 
plane x = a/2. It is well known that the axial velocity 
profiles for purely forced convection without buoy- 
ancy effects are symmetric with respect to the Y = 0.5 
line. Overall inspection of  Fig. 11 indicates that near 
the entrance, the velocity profile (curve A) is sym- 
metric and parabolic. But as the flow goes down- 
stream, this symmetry is lost and the locations of  
the maximum axial velocity move toward the bot tom 
wall. This is attributed to the buoyancy-driven sec- 
ondary flow. Far ther  downstream, the developing W 
profile approaches the fully-developed profile due to 
the decrease of  buoyancy-driven secondary flow. It 
was found in the separate numerical runs that as 
Z*  = 1, the developing Wprofile coincides with curve 
A. To investigate the effects of  buoyancy ratio N, 
the developing W profile for the case of  N = --0.5 is 
presented in Fig. 11 (b). Comparing the corresponding 
curves in Figs. l l(a) and (b), it was found that the 
buoyancy ratio N has a pronounced effect on the 
distributions of  axial velocity• The decrease of  N from 
N = 1 to - 0 . 5  makes the buoyancy effect relatively 
weak. This is due to the weaker buoyancy effects for 
the system with a smaller (1 + N ) .  

The distributions of  temperature and concentration 
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Fig. 11. The distributions of axial velocity profiles. 
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profiles are of interest in understanding tbe charac- 
teristics of heat and mass transfer. The typical 
developing temperature and concentration profiles 
along vertical certer plane x = a/2 are presented in 
Fig. 12. The buoyancy-driven secondary flow carries 
the heated fluid upward along the side walls and down- 
ward along the center region of the duct. Therefore, 
temperature and concentration gradients at the lower 
wall (Y = 0) are greater than those at the upper wall 
(Y = 1). The locations of minimum 0 or C are shifted 
toward the upper wall as the buoyancy ratio N is 
decreased. This is clearly shown in Fig. 12(b). An 
overall inspection of Fig. 12 reveals that both 0 and 
C develop in a very similar fashion. Additionally, the 
concentration boundary layers develop a little more 
rapidly than the temperature boundary layers do. This 
is attributed to the fact that Sc (= 0.6) is smaller than 
Pr (= 0.7) in the flow. 

5. CONCLUSION 

Laminar mixed convection flows in horizontal rec- 
tangular ducts under the simultaneous influences of 
combined buoyancy effects of thermal and mass 
diffusion have been studied. The effects of the Ray- 
leigh number Ra, buoyancy ratio N, Schmidt number 
Sc and aspect ratio 7 on the momentum, heat and 
mass transfer were examined in detail. What follows 
is brief summary of the major results. 

(1) Under the ranges of the governing parameters 
investigated in this work, the free convection effect is 
practically negligible only when Ra ~< 5 x 10 2. 
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Fig. 12. The developments of temperature and concentration 
profiles. 

(2) The distributions of local Nusselt (Sherwood) 
number are characterized by a decay near the entrance 
due to the entrance effect; but the decay is attenuated 
by the onset of buoyancy-driven secondary flows. 
After a first local minimum being reached, the values 
of Nu (Sh) increase to a local maximum at an axial 
location where the buoyancy effects are the most 
intense. Finally, the Nu (Sh) falls asymptotically to 
the Graetz solution value as the fully developed situ- 
ation is attained. 

(3) The local friction factor, Nusselt number and 
Sherwood number are enhanced as the buoyancy force 
from species diffusion assists the thermal buoyancy 
force. 

(4) Better heat and mass transfer is noted for a 
channel with a smaller aspect ratio. 

(5) The buoyancy-driven secondary flow distorts 
the axial velocity, temperature and concentration dis- 
tributions and the nature of the distribution depends 
on the magnitude of Ra and N. 
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